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Motivation: Why Digital Twins for Agriculture?

& Y
Massive Water Use Climate Pressures
Agriculture consumes approximately 70% of Increasing frequency of extreme droughts and
freshwater resources globally, making efficient use rainfall due to climate change destabilizes water
critical. availability.
71\ [

Inefficiencies in Traditional Irrigation Predictive Capability of Digital Twins
Conventional irrigation methods are reactive, DTs integrate data and models to forecast water
inefficient, and often result in water wastage. needs and optimize irrigation schedules

proactively.
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What is a Digital Twin?
' |
K/ [l
Dynamic Virtual Replica Origins in Industry
A digital twin is a continuously updated virtual Initially developed for aerospace and Industry 4.0
representation of a physical system, mirroring its to simulate engines, machines, and factories.
behavior and state.
- o
= o H
Real-Time Data Ingestion Predictive Modeling & Feedback
Ingests data from sensors, satellites, and models Runs simulations to forecast future conditions and
in real time to maintain an accurate state. enables proactive adjustments in physical
systems.
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Digital Twins in Agriculture

e Virtual Crop & Soil Model: Digital Twins create
a real-time, data-driven model of crops and
soils, enabling dynamic monitoring and control.

¢ Simulation Capabilities: Supports ‘what-if’
analyses for irrigation scheduling, fertilizer
application, and yield forecasting.

¢ Risk Management: DTs help assess and
mitigate risks related to droughts, flooding, and
crop diseases.

e Precision Agriculture Support: Enhances
decision-making with fewer inputs and higher ’ ¢ jon
effi ciency thl’OUgh integrated data iﬂSig hts. Plantation with green crops growing in agricultural farm [pexels.com]
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Case Study: AI4AWATER Project Digital Twin (i)

e Project Objective: Developed a Digital Twin for
irrigation optimization in Catalonia using multi-
source data.

e Multi-Scale Forecasting: Predicted soil
moisture from field to regional scale using

machine learning models.

¢ Data Integration: Merged EO data (SMOS,

SMAP), meteorological datasets (ERAS5, APIs),
and in situ probes.

e LSTM-Based Prediction: Used Long Short-

Term Memory (LSTM) networks to forecast soil
moisture 14 days ahead.
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Case Study: AI4AWATER Project Digital Twin (ii)
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Tutorial Outline

e Data Sources: Explore remote sensing, meteorological, and in situ datasets essential for Digital Twins.

* Data Integration & Management: Understand how diverse data streams are ingested, stored, and
aligned using FAIR principles.

e Neural Network Training: Dive into LSTM models trained to predict soil moisture using multi-source
inputs.

e Applications & Insights: Analyze results from field deployments, including irrigation
recommendations and water savings.

e Conclusions & Future Outlook: Review key findings and envision future developments like
continental-scale DTs.
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Traditional Management of Irrigation Water (i) © B=WP.XTr

. Where, B is the biomass produced cumulatively (kg per m2), Tr is the crop
Plants need water to develop, and only a portion of the total  tanspiation teither mm or m per unit surface), with the summation over
the time period in which the biomass is produced, and WP is the water

blomass |S COnVerted |nt0 CrOpS roductivity parameter (either kg of biomass per m? and per mm, or kg of

1 m . n B e N—— biomass per m? of water transpired).
= You can't produce "more with less" =~

For most crops, only part of the biomass produced is partitioned to the
harvested organs to give yield (Y), and the ratio of yield to biomass is known
as harvest index (HI), hence:

()] Y=HI-B

Indice e drea foliar (AR

The underlying processes culminating in B and in HI are largely distinct
from each other. Therefore, separation of Y into B and HI makes it possible
to consider effects of environmental conditions and stresses on B and HI
separately.

WATER USE & PRODUCTIVITY

Total cumulative evapotranspiration (ET) of wheat crops typically ranges from 200 to 500 mm,
although it can be less in non-irrigated semi-arid areas and reach 600-800 mm under heavy
irrigation. The slope of the plot of grain yield vs. ET can be taken as the water productivity
in terms of yield and consumptive use (WPyer). If the x-intercept of this relationship is taken
as a measure of cumulative soil evaporation, then the slope can be interpreted as the water
productivity in terms of transpiration (WPy;y,). On this basis, WPy, is typically reported to be

\

i

around 1.0-1.2 kg/m? (10-12 kg/ha per mm) for grain production (French and Schultz, 1984). An
international analysis has indicated_the maximum achievable efficiency (for grain) in current
wheat systems is likely to be around 2.2 ka/m? (Sadras and Angus, 2006).

Adapted from “Experiencia en la Mejora de la Eficiencia en el Uso del Agua en Agricultura de Regadio:
Tecnologia, Informacién e Implicacién de los usuarios”, Vicente Bodas, Albacete, 29/2-1/3, 2024
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Traditional Management of Irrigation Water (ii)
anspiration
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ET = Transpiration + Evaporation

Satellite: Agroclimatology
Temporal Evolution SiAR network!!l / RuralCat!?
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ET=Ks - Kcb - ETo + Ke -ETo

T’ b

Water balance
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Tarazona de La Mancha
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days
https://www.fao.org/3/x0490E/x0490e0c htm#t
ranspiration%20component%20(kcb%20eto)

Water balance & Fia 01

a)

in the root zone in the surface 1 i 2‘W
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at.gencat.cat/web/guest/agrometeo.estacions Readily Available Water (RAW) Total Available Water (TAW)

Adapted from “Evapotranspiracion y balance de agua en suelo en cultivos lefiosos”, Juan Manuel Sanchez & Jaime Campoy, Albacete, 29/2-1/3, 2024
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Traditional Management of Irrigation Water (iii)
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Difference between actual ET and potential ET is a
measure of the degree of water stress of the plant.

Hydric stress
coefficient

Low water stress
‘Water movement . Energy fluxes

Air w; depends on VPD, | S
usually low \ M H /

Transpication §1

Low stomatal
resistance increases
N9 latent heat flux (LE),
lowering canopy

¢ surfoce temperotures

open

Soil ¥: high when moist -

High water stress (drought)

Water movement | Energy fluxes
Air W: depends on VPD, | / 5
wsually low 3 / ET

No transpiration | |

CWSI=1——
ET.

0<CWSI<1 potential ET

» AquaCrop - The FAO Crop Water Productivity Model [https://www.fao.org/aquacrop]

High stomatal
Bl resistance increases
R sensible heat flux (M),
R\ increesing conopy
N surfoce temperatures

Leaf W: lower,
stomata closed g

Mowateruptake |
Soil W: Low when dry |

Adapted from “Evapotranspiracion y balance de agua en suel
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The Role of Remote Sensing (i)

Virtual
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Cloud computing
and storage layer
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layer Gateway

Data storage and
processing layer

Data transfer and
collection layer

Physical
layer
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The Role of Remote Sensing (ii)

¢ Extensive Spatial Coverage: Satellites observe
large areas frequently, providing consistent data for
entire regions and enabling macro-scale
monitoring.

¢ Multiscale Monitoring: Remote sensing captures
vegetation, soil, and hydrological variables across
spatial scales—from field plots to entire
watersheds.

¢ Non-Intrusive & Scalable: Aerial observations are
cost-effective, repeatable, and non-invasive, ideal
for monitoring dynamic agricultural landscapes.

e Critical Input for Digital Twins: Satellite data
serve as essential layers in DTs, complementing in
situ and meteorological inputs.

NDVI crop mapping. Credits: poco_bw [istockphoto.com]

8/10/2025/ A. Camps, UPC 2025 12/93
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Types of Remote Sensors
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Passive: Microwave Radiometers

Blackbody Radiation
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bec.icm.csic.es/south_america_seen_by_smos]

LCo6T (et seale)

http://Icogt.net/spacebook/black-body-radiation]
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Key satellites for Agricultural Monitoring

* Sentinel-1 (SAR): Synthetic Aperture Radar penetrates clouds to monitor soil moisture and detect
flooding events with high temporal resolution.

e Sentinel-2 (Optical): Captures multispectral imagery for calculating vegetation indices like NDVI and
LAl, aiding in crop monitoring.

e Sentinel-3 (Thermal): Provides surface temperature and evapotranspiration data crucial for modeling
crop water use.

e SMOS & SMAP (Radiometry): Dedicated soil moisture missions offering global coverage of topsoil
conditions used in drought and irrigation management.

e Sentinel-6 (Altimetry): Monitors hydrological systems like rivers and lakes through satellite altimetry.

8/10/2025/ © A. Camps, UPC 2025 14/93
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Synthetic Aperture Radar - SAR (i): Sentlnel 1

Synthesized Aperture Length

* SAR Polarimetry (PoISAR) .
+  Multi-temporal data:
= object & change detection
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[https://hyp3-docs.asf.alaska.edu/hyp3-docs/guides/introduction_to_sar/]!
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Synthetic Aperture Radar - SAR (ii): Sentinel-1

SAR Polarimetry (PolSAR) & Multi-temporal data for crop mon
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Synthetic Aperture Radar - SAR (iii): Sentinel-1

Daily 1 km Soil Moisture Index (SSM)
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¢ Itis not Soil Moisture, it is an “index” from [0, 1]
* Measures reflectivity changes
* SAR is affected by speckle noise = average from 10 m to 1000 m

-y

Sentinel-1

[https://land.copernicus.eu/global/products/] Single pass: 19/6/2023 6 combined passes: 14_19/6/2023
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Optical Sensors: Sentinel-2 and Sentinel-3

NDVI (Normalized Difference Vegetation Index):
NDVI = PNIR ~ PRed * It does not measure the soil moisture
PNIR T PRed * It does measure the plant “health”
* lItis sensitive to the outer layer
* Many applications for laptop and cell phone

UNHEALTHY VESETATION

Vo

REFLECTANCE
e

soiL
Lo Indicacién: Fecha de la ltima imagen

400 450 500 S50 500 450 700 7SO 8CO @50 900 950
WAVELENGTH

[https://bi com.np/media/uploads/2020/05/07/
[https://physicsopenlab.org/wp-content/uploads/2017/01/veg.gifl  ndvichart_eD4HXBw.png]

Sentinel-3 OLCI (300'm)

[credits ESA]
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GNSS-Reflectometry: NASA CyGNSsS (present), and ESA HydroGNSS & Atlantic Constellation (future)
» Reflectometry using satellite navigation signals Vegetation water content (VWC) seasonal cycle
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GNSS-Transmissometry (in situ)

Transmissometry using navigation signals (GNSS-T) allows to estimate the opacity of vegetation, which is linked to
water content, locally and continuously over time

GNSS satellites
(e.9. GPS. GLONASS,
Galileo, BeiDau) 2
-
A

Instrument A
(open-sky reference)

2015/10/22

NDVI

canopy
transmissivity

"

'
E . I i 1] 528" |
- . | 575" k,'
- § 35 f 625" | I
- | 67.5° | 401
325+ 725 i

. s

55 I | 825’
i Sep Oct Nov Dec Jan Feb Mar Apr May

B Tower (eg eddy

N

2016/03/31 2016/03/31
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Soil Moisture Missions: SMOS & SMAP (i)
ESA SMOS
* SMOS — ESA (2009-): Provides global surface

soil moisture at ~40 km resolution. Uses passive
L-band radiometry to observe topsoil dynamics.

SMAP — NASA (2015-): Delivers higher-
resolution (~9 km) data on soil moisture.
Complements SMOS with improved spatial detail.

Applications: Support drought monitoring,
irrigation planning, and early warning systems.
Widely adopted in agrifood and hydrology sectors.

Limitation: Only captures the surface layer (0-5
cm), requiring models and in situ data to estimate
deeper moisture.
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Soil Moisture Missions: SMOS & SMAP (ii

—
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L-band Microwave Radiometers: Very sensitive to surface soil moisture and vegetation water content
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Copernicus ERA-5 Land Reanalysis

0,
Long-Term Reanalysis
Provides consistent climate and hydrological data
from 1950 to present, using model assimilation of
observations.

0%
High Spatial Resolution

ERAS5-Land offers data at 0.1° (~9 km) resolution,
suitable for regional to local-scale modeling.

BUPCxels $agrixels

O

High Temporal Resolution
Hourly data enables detailed analysis of short-
term dynamics like evapotranspiration and rainfall
events.

¥

Water Balance Closure

Delivers key variables (rainfall, temperature, ET)
needed to model water balance and soil moisture

changes.
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Accessing Data via Sentinel Hub

4

Open Platform
Sentinel Hub provides access to various EO
products through user-friendly APIs and web
interfaces.

(=]

Custom Queries

Users can define areas of interest and time ranges
to extract tailored EO data products.

~

Index Computation
APls support generation of vegetation indices like
NDVI, NDWI, and LAl on-demand.

o
)
Automation-Ready

Simple HTTP/JSON calls enable integration into
automated pipelines and Digital Twins.

[https://browser.dataspace.copernicus.eu/]
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Vegetation Indices for Irrigation Insight

NDVI (Normalized Difference Vegetation
Index): Quantifies vegetation greenness and
photosynthetic activity—widely used for crop
health monitoring.

EVI (Enhanced Vegetation Index): Improves
sensitivity in high-biomass regions and corrects
for atmospheric distortions compared to NDVI.

LAI (Leaf Area Index): Measures canopy
density, estimating total leaf surface area—
strongly linked to biomass and transpiration.

Irrigation Relevance: Vegetation indices help
detect crop stress early, enabling optimized
irrigation before visible symptoms emerge.

BUPCxels &oagrixels &=
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NDVI Time Series & Crop Calendar Alignment

‘l
Field-Level NDVI Monitoring
Satellite-derived NDVI values are tracked over time

to observe crop greenness dynamics and stress
responses.

il
BH
Crop Calendar Comparison
Aligning NDVI with phenological stages helps
identify anomalies and plan irrigation around
sensitive periods.

™

Seasonal Evolution
NDVI curves show clear phases: emergence,
growth, peak, senescence—mirroring crop
development.

Operational Use
These insights guide proactive decisions—e.qg.,
intensifying monitoring during flowering or
reducing irrigation post-peak.

8/10/2025/
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NDVI Time Series & Crop Calendar Alignment

Estimated net irrigation ratio vs average
NDVI July-August Multiannual Woody
Average 2018-2020

Woody crop Consumption
(m®/ha)

Olive trees and pistachio (support irrigation)
Almond tree (support irrigation)
Nuts, olive groves and others (0.35 < NDVI < 0.45)

Nuts, olive groves and other intensive irrigation (0.4 < NDVI < 0.55)

Nuts, olive groves and other super-intensive irrigation (NDVI > 0.55)
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Other Vegetation Indices (i)
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Other Vegetation Indices (ii)
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Other Vegetation Indices (iii)
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Remote Sensing: Data Quality Issues

@ @ SpaceSUITE

e Cloud Obstruction in Optical Data: Clouds block
surface visibility in optical sensors like Sentinel-2,
leading to missing or noisy NDVI observations.

¢ Radio Frequency Interference (RFI): L-band
radiometry from SMOS/SMAP is impacted by
terrestrial radio noise, especially in densely
populated areas.

¢ Radar Signal Distortion: SAR-based soil moisture
can be distorted by vegetation cover, surface
roughness, or dielectric variability.

* Temporal Gaps: Satellite revisit times and data

dropouts introduce gaps that must be interpolated
or modeled.

8/10/2025/
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Fusion with Ground Data

v
AR
Downscaling Satellite Data

Satellite soil moisture is coarse (~9-40 km);
ground probes help refine estimates to field-scale
(e.g., 60 m).

-
=

Multi-Sensor Synergy
Merging optical, SAR, and radiometric data creates
more robust and reliable soil moisture profiles.

8/10/2025/
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Data Assimilation Techniques

Combining EO with in situ sensors using models
improves depth penetration and accuracy of root-
zone moisture estimates.

v

Operational Relevance
Ground-calibrated satellite data support actionable
insights in irrigation management and drought
monitoring.
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Case Study: Soil Moisture Maps vs. Probe readings

¢ Satellite-Derived Soil Moisture: Maps from

SMOS/SMAP show spatial patterns of wet and
dry zones at coarse resolution.

¢ |n Situ Probe Observations: Point-based

measurements offer high precision soil
moisture readings at specific depths.

¢ Visual Correlation: Comparison reveals

alignment between satellite zones and probe
values—validating EO data utility.

¢ Training Data for ML: Combined data serve as

training and validation sets for LSTM models in
Digital Twins.

8/10/2025/ © A. Camps, UPC 2025
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Open Tools for Remote Sensing Data & Digital Twins

Google Earth Engine (GEE): Cloud-based
platform for big data EO analysis with access to
petabytes of imagery and environmental data.

Sentinel Hub: Offers APIs and GUI tools to
access and visualize Sentinel data and
compute vegetation indices.

Barcelona Expert Center: Provides tailored
SMOS/SMAP soil moisture products and
research-grade EO data services.

Democratizing EO Access: These platforms
enable scalable, open-source EO applications in
agriculture, water, and climate.

8/10/2025/ © A. Camps, UPC 2025

[https://earthengine.google.com/]

[https://browser.dataspace.copernicus.eu/]

[https://bec.icm.csic.es/]

Rigs
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Summary: Remote Sensing in Digital Twins for Agriculture

* Provides Large-Scale Observations: Remote
sensing delivers consistent, regional-scale data
on soil, vegetation, and hydrology.

* Complemented by Other Data: Satellite data
must be integrated with meteorological inputs
and in situ sensors to cover limitations.

e Supports Dynamic Monitoring: Enables
frequent updates of crop condition, soil
moisture, and evapotranspiration in Digital

Twins. [Picture from Unsplash]

e Foundation for Predictive Analytics: Feeds
machine learning models and irrigation
simulations within the DT framework.
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The Role of Meteorological Data (i)

Virtual
layer

Cloud computing
and storage layer

Communications
layer

Data storage and
processing layer

Data transfer and
collection layer

Physical
layer
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The Role of Meteorological Data (ii)

e Primary Driver of Soil-Plant System: Weather
variables control water input (precipitation) and
output (evapotranspiration) in the soil—-crop—
atmosphere continuum.

e Evapotranspiration Modeling: Temperature,
radiation, wind, and humidity determine crop water
demand and reference evapotranspiration (ETy).

e Forecast Integration: Weather forecasts support
predictive irrigation scheduling by anticipating
near-future water needs.

e Critical for Water Balance: Accurate rainfall and
ET estimates are essential for calculating the soil
water budget.

UNIVERSITAT POLITECNICA  pmtm -, . e Financiado por
@ s BUPCxels agrixels = s [ H

[Picture from Unsplash]
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Meteorological Data Sources

0,
Copernicus ERA5-Land
Historical reanalysis dataset with hourly weather
variables since 1950. Provides climate context and
model training input.

I |
~/
Complementary Coverage
ERAS offers consistency over decades; Open-
Meteo ensures up-to-date forecasts for proactive
decision-making.

UNIVERSITAT POLITEGNICA
DE CATALUNYA UPC I
EARGELONATEGH e Xels
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Open-Meteo API

Real-time and forecast weather data service.
Delivers 7-14 day predictions via simple API calls.

"
Supports Multiple Applications

Both datasets feed irrigation scheduling, soil
moisture modeling, and anomaly detection.

ECMWEF, NOAA, national and regional meteorological agencies — May require specific APIs for each

8/10/2025/
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Key Meteorological Variables

bbb

Precipitation

Primary water input to soil; drives infiltration,
runoff, and recharge. Highly variable and forecast-
sensitive.

03

Solar Radiation

Drives photosynthesis and crop energy balance;
key input to ET, estimation.

8/10/2025/
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8

Temperature

Affects soil evaporation, plant growth rates, and
evapotranspiration. Critical for stress modeling.

-
L

Wind Speed & Humidity

Influence vapor pressure deficit and crop
transpiration rate; modulate daily ET values.

© A. Camps, UPC 2025 39/93
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Example API Call for Automated

UNIVERSITAT POLITECNIGA . e
@ e BUPCxels £aor

Weather Data Retrieval:

1. Client sends a POST request with JSON
data to create a new user

2. APl Gateway validates the request with
the authentication service

3. Authentication Service confirms the
token is valid

4. Business Logic Service processes the
validated request

5. Database stores the data and returns
confirmation

6. The response flows back through the
same path with status information

WEtF 241 Creatod
[t atutis nto)
me path with status information

Response flows back through the sa
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© A. Camps, UPC 2025 40/93




10/8/2025

UNIVERSITAT POLITECNICA - ana Financiado por
& T spacesurre @ E5EE0 " BUPCxels agrixels i o B
Impuls
Agritech

Integration with EO
Aligning Meteorological Forecasts with Satellite Observations

O bh

Temporal Harmonization Forecast-Based Forward Simulation
Forecasts (hourly/daily) must align with infrequent Meteorological forecasts extend EQ data utility by
satellite overpasses—this requires resampling, enabling forward simulations—LSTM models can
aggregation, and temporal interpolation ingest both to predict 14-day soil moisture trends
techniques to ensure consistency in model inputs. for irrigation scheduling.
w ~
~ &
Data Alignment Strategies Operational Synchronization
Techniques like time-window matching, lag For real-time DT operation, automated
correction, and feature engineering bridge the synchronization scripts ingest EO and meteo
gaps between asynchronous EO and forecast inputs with timestamps normalized to server time,
datasets, crucial for machine learning pipelines. ensuring temporal integrity across data streams.
8/10/2025/ © A. Camps, UPC 2025 41/93
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Uncertainty Issues

¢ Forecast Horizon Limits: Forecast accuracy declines
sharply beyond 5-7 days, especially for precipitation.
Digital Twins must account for this decay to avoid false [
irrigation triggers.

¢ Spatial Representativity Gaps: Forecast grid cells often
span multiple microclimates—resulting in generalized
outputs that may misrepresent farm-level variability
critical for water decisions.

¢ Bias Correction Needs: Systematic over-/under-
estimation in model outputs necessitates bias correction
via ground station anchoring or dynamic reweighting in
the ML pipeline.

¢ Impact on Decision Confidence: Uncertainty directly
affects trust in DT recommendations. Farmers are less
likely to follow automated advice unless risk levels and
reliability are clearly communicated.

8/10/2025/ © A. Camps, UPC 2025

[Picture from Unsplash]
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Summary: Meteorological Data in Digital Twins for Agriculture

Key Role of Weather: Meteorological conditions—
especially rainfall, radiation, temperature, and wind—drive
evapotranspiration and crop water needs, forming the
core of DT logic.

Data Source Synergy: Combining historical reanalysis
(e.g., ERA5-Land) with real-time forecasts enables
backward-looking validation and forward-looking
irrigation predictions.

Forecast Integration Challenges: Temporal
misalignment, spatial generalization, and model bias
require harmonization steps before forecasts can be used
effectively in ML-driven Digital Twins.

[Picture from Unsplash]

Predictive Capability Boost: By ingesting forecasts, DTs
evolve from descriptive monitoring tools into predictive
decision-support systems, enabling proactive irrigation
planning.
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The Role of Ground Observations (i)
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The Role of Ground Observations (ii)

* High-Resolution, Site-Specific Data: Probes
measure soil moisture, temperature, and salinity
at various depths—vital for local model
calibration.

* Temporal Continuity: In situ sensors provide
continuous readings, capturing short-term
dynamics not resolved by satellites.

» Validation & Downscaling: Used to validate EO
data and scale it down to field resolution,
bridging remote sensing gaps.

Critical for Irrigation Management: Ground
data guide real-time irrigation decisions and
alert for thresholds like field capacity or wilting
point.

UNIVERSITAT POLITECNICA pe—
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AI4WATER in situ sensors:

*  Blue: meteorological stations
*  Red: soil moisture/temperature/electric conductivity probes
probes not operational any more

La:Fuliola
Bel-Hoc d’Urgell "=

. Seca
al 2023
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Types of Ground Data

é

Soil Moisture Probes

Multi-depth sensors (e.g., Sentek Drill & Drop)
measure volumetric water content through the root
zone.

2

Plant-Based Sensors

Devices such as dendrometers and leaf-turgor
sensors directly monitor plant water status.

UNIVERSITAT POLITECNIGA .
OF CATALUIYA B UPCxel
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Weather Stations

Collect temperature, humidity, wind, and rainfall
data locally for ET and crop stress modeling.

Data Logging & Transmission

In situ systems connect via telemetry (LoRa, GSM)
to send data to cloud platforms like IrriMAX Live.

Teaaein
h Wit
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Soil Probes (Sentek/Irrimax)

S N
Vertical Profiling
Probes measure volumetric water content at
depths such as 0-10, 10-40, and 40-100 cm—
critical for understanding root-zone water
availability across growth stages.

Precision Irrigation Support
Data from different soil layers inform irrigation
decisions tailored to crop root depth and soil
retention characteristics, minimizing over- or
under-watering.

(-A-) ‘.
Hiah-f Rea!;l'lme h:gnggrlng id Training Data for ML Models
igh-frequency updates (15-30 minutes) provi These measurements serve as training targets in

continuous visibility into infiltration dynamics, LSTM-based models, anchoring simulations and

enabling fine-tuned responses to rainfallor . A A ; ; :
e improving accuracy in soil moisture forecasting.
irrigation events.

- Financlado por P e
- 1a Unién Europea Becwarnatr,
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20 x IRRIMAX probes: SM,
T, EC every 10 cm from 5 to 115 cm
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ATMOS-41 Station

.}
=5 s}
Comprehensive Sensing Suite Compact and Solar-Powered
ATMOS-41 measures precipitation, solar radiation, Fully integrated and self-powered via solar panel,
temperature, humidity, wind speed/direction, the station simplifies deployment in remote fields

barometric pressure—covering all key ETO without requiring grid electricity or complex
variables in one device. infrastructure.
Critical for ETO Calculation Robust Field Performance

Supplies direct inputs for Penman-Monteith ETO Designed for harsh agricultural environments,
model—enabling real-time estimates of crop water ATMOS-41 ensures consistent data transmission
demand critical for Digital Twin irrigation logic.  even under wind, rain, and temperature extremes.

8/10/2025/ © A. Camps, UPC 2025

2 x ZENTRA ATMOS 41
meteorological stations: rays,
ETo, atmospheric pressure,
vapor pressure, precipitation,
solar radiation, air
temperature...
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Example measurements

-
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Layered Moisture Response
Topsoil (0-10 cm) shows immediate spikes after
rain or irrigation, while deeper layers (40-100 cm)
respond gradually, reflecting percolation time and
soil structure.

e

Event-Based Analysis
By aligning rainfall timestamps with probe data, we
assess how much water was retained vs. lost—
vital for evaluating irrigation efficiency.

BUPCxels Hoagrixels = s ™ -5

é

Infiltration Dynamics
Time series reveal the rate at which water
penetrates through the profile, enabling analysis of
soil texture, compaction, and retention across
depths.

oo
Model Validation Role
These measurements validate whether LSTM

forecasts realistically mimic the timing and
amplitude of real-world soil moisture dynamics.

8/10/2025/
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Example of moisture profiles (rainfed field 2023, La Fuliola)

Temperature [C]

Logger ‘'UPC_SMProbe_05" Last reading 2025-07-27 00:00 = Site Defaull , Probe P1°, Scm = 1Scm =25

cm - =45¢cm - =mgScm =7S5cm =85cm =95cm =105cm =

Sail Water Cortert

--4€ [«

T T T T T
01 Sep 01 Nov 01 Jan 01 Mar 01 May

T
01 Jul

T T
01 Sep 01 Nov

2023 [

2024 I
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Example of moisture profiles from a probe (irrigated field, Bell-lloc d’Urgell)

Temperature [*C]

Logger 'UPC_SMProbe_18" Last reading 2025-09-13 00:00 = Site Defaull’, Probe P1',Scm = 15cm =25cm

‘Soil Water Content

EC [dS/m] 3
T T T T T T T T T T T T T T T T T T T T T T T
[mm] g1 Nov 01 Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01 Apr 01 Jun 01 Aug 010¢ct
2023 [ 2024 [ 2025
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Example of meteorological Precipitation [mm
station data — ATMOS 41

Vapor Pressure Deficit [kPa]

WMM*&LM e
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Data Integration

Training Neural Networks: In situ soil moisture readings
serve as targets for LSTM models, enabling supervised
learning based on multi-source inputs (EO, meteo,
probes).

Bias Correction Anchor: Sensor data correct systematic
errors in satellite- or forecast-derived estimates, ensuring
Digital Twins remain accurate and trustworthy.

Temporal Synchronization: Combining asynchronous
data sources requires careful timestamp alignment and
interpolation to ensure meaningful integration into
training datasets.

Fusion at Feature Level: Inputs from EO indices (NDVI,
LAI), weather (ETO, rainfall), and probes are fused into
feature vectors that capture both spatial and temporal
variability.

Financlado por
1a Unién Europea
[r——

[Picture from Unsplash]
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Challenges

Sensor Calibration and Drift: In situ sensors require
frequent recalibration due to electronic drift and
environmental exposure. Dust, temperature cycles, and
corrosion alter readings over time, demanding periodic field
validation.

Maintenance Burden: Physical maintenance is resource-
intensive—sensors must be checked for biofouling, cabling
faults, and battery depletion, particularly in remote
agricultural plots.

Spatial Representativeness: Point sensors measure small
soil volumes, which may not represent heterogeneous field-
scale conditions such as texture variation or irrigation
gradients.

Data Continuity Risks: Power failures, vandalism, or
connectivity gaps can create missing data periods,
compromising time-series integrity crucial for model
calibration.

8/10/2025/ A. Camps, UPC 2025
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Summary: Ground Observations in Digital Twins for Agriculture

¢ Ground Truth Role: In situ networks anchor digital twins
to measurable physical conditions, providing the
calibration foundation for all satellite and model-based
soil and climate products.

Temporal and Spatial Fineness: High-frequency,
localized data allow for resolving sub-daily processes and
microclimate effects, far exceeding the revisit frequency
of satellites.

Validation and Benchmarking: Ground observations
form the benchmark for model validation, ensuring Al-
driven predictions and Earth Observation analyses remain
tied to empirical data.

[Picture from Unsplash]

Integration with Digital Twin Ecosystem: By linking in
situ, EO, and model data streams, systems achieve
dynamic calibration—updating the digital twin with real-
time field conditions.
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Data Pipeline (i)

Virtual
layer

\)

Cloud computing
and storage layer

J
]
)
)

|
A

Communications
layer

Data storage and
processing layer

Data transfer and
collection layer

Physical
layer
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Data Pipeline (ii)

O

Acquisition
Data are collected from in situ sensors, satellites,
and meteorological models. Each source operates
at different temporal and spatial scales requiring
harmonization at ingestion.

Storage
Centralized cloud repositories or distributed data
lakes store structured and unstructured data,
ensuring redundancy, scalability, and access
control.

8/10/2025/

© A. Camps, UPC 2025

BUPCxels $agrixels Hi=smmn=

Ingestion
Automated ETL (Extract-Transform-Load)
processes convert heterogeneous raw data into
standardized formats such as NetCDF or GeoTIFF,
tagging with metadata for traceability.

<

Dissemination
Processed data products are distributed via APls,
dashboards, and user portals, enabling seamless
integration into Al pipelines and Digital Twin
visualization layers.
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FAIR Principles in Meteorological Data

Q

Findable

Data must have rich metadata and identifiers so
users can locate datasets easily via search and
indexing.

—

Interoperable

Datasets must use standardized formats and
vocabularies to enable seamless integration
across platforms.

8/10/2025/
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Accessible

Data should be retrievable using standard
protocols (e.g., APIs), with clear usage licenses.

&

Reusable

Clear documentation and provenance ensure that
data can be applied in new contexts and long-term
studies.
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Data Platforms

©
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Google Earth Engine (GEE)

A planetary-scale platform enabling petabyte-scale
analysis of satellite and geospatial data, ideal for
machine learning integration and large-scale
environmental monitoring.

AWS and Cloud-Native Storage

Amazon Web Services supports elastic data
storage and serverless processing pipelines using
services such as S3, Lambda, and SageMaker for

scalable EO computation.

-

BUPCxels Hoagrixels = s ™ -5
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L

Barcelona Expert Center (BEC)
Provides specialized ocean and land data
products, calibration datasets, and algorithmic
validation services through ESA’s EO data
ecosystem.

&
Interoperability Layer
Modern platforms increasingly expose OGC-
compliant APIs to interconnect analysis

environments, enabling cross-platform Digital Twin
workflows.

8/10/2025/
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Data Fusion Challenges

()

* Spatial Scale Discrepancy: Field sensors measure at
point or plot scale (~1 m), while satellite data often
represent aggregated pixels of 30-1000 m, requiring
upscaling or downscaling strategies.

* Temporal Resolution Mismatch: Satellites typically
provide daily or multi-day revisits, while in situ networks
capture sub-hourly variability. Synchronizing these time
steps is essential for accurate fusion.

* Noise and Bias Propagation: Merging heterogeneous
data sources introduces biases and uncertainties that

propagate through models unless properly corrected with

statistical harmonization techniques.

e Computational Demands: Large-scale data fusion
across multiple sensors and time steps requires
advanced cloud computing resources and optimized
algorithms for efficient processing.

UNIVERSITAT POLITEGNIGA
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AI4AWATER Server Architecture

O

Data Sources
Combines data streams from satellites, in situ
sensors, and meteorological networks, forming a

continuous inflow into the AI4WATER ecosystem.

Machine Learning Layer
Deep learning models (e.g., LSTMs) process
temporal patterns and spatial correlations,
generating soil moisture and irrigation forecasts.

8/10/2025/

© A. Camps, UPC 2025

%UPCX&IS t“ﬁ ngtxe!g o s -F\ninclidc v

Server Core
A centralized processing hub ingests, harmonizes,
and stores multi-source data. Edge computing
nodes support low-latency processing at sensor
locations.

o=
Visualization and Dashboard
Interactive web-based dashboards present

predictions, uncertainty metrics, and sensor
network status in real time for decision support.
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Metadata Standards
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STAC Framework
The SpatioTemporal Asset Catalog (STAC)
provides a universal metadata schema to describe
geospatial datasets, supporting discoverability and
interoperability.

e
bt
e

Soil Moisture Dataset Example
A STAC Item might define a GeoTIFF asset for soil
moisture, with metadata linking to sensor type,
temporal coverage, and processing history.
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Core Elements
Includes asset ID, bounding box, datetime, license,
and data links—allowing automated cataloging
and APl-based search.

&
Integration with Digital Twins
STAC metadata enables dynamic data ingestion

into digital twin architectures, supporting version
control and provenance tracking.
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Summary: Data Pipeline

Centralized Knowledge Base: Data servers act as the
persistent memory of the Digital Twin, integrating real-
time and historical data streams across multiple
domains.

FAIR and STAC Compliance: By adhering to FAIR and
STAC standards, data remain discoverable,
interoperable, and reusable within global digital
ecosystems.

Fusion and Computation Hub: Servers host Al models
and data fusion processes, transforming heterogeneous
inputs into harmonized knowledge representations.

[Picture from Unsplash]

Enabling Predictive Intelligence: Efficient
management and access frameworks empower the
twin’s neural components to forecast, diagnose, and
optimize environmental conditions.
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Virtual Layer - the “core” of the Digital Twin (i)
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Virtual
layer

Cloud computing
and storage layer

Communications 10T/GPRS.
()
layer [ ((‘)) Omcmy ]
Data storage and Local Data
processing layer Baposicres
Data transfer and @% Data sources &
collection layer 8 e controlier

Physical
layer
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Virtual Layer - the “core” of the Digital Twin (ii): Why Machine Learning ?
* Capture Non-Linear Interactions in Agro-Environmental Systems
* No need to “implement” FAO56 models... ML “learns” them from the data

Complex Interactions
Soil moisture dynamics depend on highly non-
linear feedbacks between climate, soil properties,
vegetation, and management practices that
traditional models struggle to capture.

=
=

Data Availability
Remote sensing, IoT sensors, and meteorological
networks now provide vast, multi-modal datasets
ideal for Al-driven inference.

e
Limitations of Physical Models

Process-based hydrological models are data-
hungry and rigid, requiring extensive calibration
and often failing to generalize across scales or

conditions.

[2

Predictive Flexibility
Machine learning can learn complex dependencies
directly from data, enabling adaptive forecasting
even under variable climatic regimes.

8/10/2025/
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Time Series Forecasting Methods

2
Classical Models
ARIMA, VAR, and Kalman filters model linear

temporal dependencies and are effective for short-
term forecasting with stationary datasets.

Deep Learning Approaches
Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Transformers can learn long-term
dependencies and complex patterns.

BUPCxels & agrixels

<
=

Ensemble Methods
Tree-based algorithms like Random Forest,
XGBoost, and CatBoost capture non-linearities and
feature interactions without explicit time modeling.

R—-u
[ |

Hybrid Techniques
Combining statistical and deep learning methods
improves robustness and interpretability in soil
moisture and hydrological forecasting.
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Why LSTM ?

©

UPCxels &oaogrixels =%

- Financlado por P e
- 1a Unién Europea Becwarnatr,
[ ——] W s Reiincs

Capturing Long-Term Dependencies in Environmental Data

Memory Retention
LSTM networks store information across long
sequences, overcoming vanishing gradient issues
that affect standard RNNs.

l4a
Multivariate Capability

LSTMs efficiently process multi-dimensional time
series including EO, meteorological, and in situ
data simultaneously.

b
Temporal Context Awareness
Their gating mechanisms—input, forget, and

output—enable selective information flow,
maintaining relevant dependencies over time.

b 4

Proven Robustness
Widely used across hydrology and agriculture,
LSTMs outperform linear models for soil moisture
forecasting and drought prediction.
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LSTM Architecture w

o Input Layer: Multivariate inputs (e.g., EO indices,
temperature, precipitation) are normalized and
encoded as sequential vectors for processing.

e Hidden LSTM Cells: Each LSTM cell contains three
gates—input, forget, and output—that regulate the
flow and retention of information over time steps.

e Qutput Layer: The final dense layer transforms
hidden states into continuous outputs, such as
predicted soil moisture values for each depth or
pixel.

* Architecture Advantages: This architecture
enables long-term context retention, gradient
stability, and scalability across multiple variables
and spatial units.

i input gate
= e e e
anh(W,[hs1,] + be) candidate state
Ci=ioCa+i@C cell update
________________ 1
gt goie 1

hy = 0; @ tanh(C}) hidden state

Key properties
« The additive update in Cy allows gradients to flow without vanishing.
+ Multiplicative gates (fy, ¢, 0¢) act as differentiable logic controls.

+ Each gate has independent parameters (W., b, ) learned by back-propagation through time.

[1] Hochreiter, S. and Schmidhuber, J., Long Short-Term Memory. Neural Computation, 9(8), 1735-1780,1997.
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Training Setup
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Integrating Multi-Source Data for Model Calibration

&

Input Variables
Earth Observation indices (NDVI, NDWI),
meteorological variables (precipitation,
evapotranspiration), and in situ soil moisture are
combined into unified time-series inputs.

¥

Normalization and Scaling
Data are standardized to remove unit biases and to
ensure stable training convergence across
spatially diverse datasets.

e
o
R

Output Targets
The model predicts soil moisture values at
multiple depths and locations, capturing vertical
soil dynamics and regional heterogeneity.

Training Infrastructure
Training is performed on GPU-enabled cloud
environments, enabling efficient hyperparameter
optimization and fast model iteration.

Financlado por
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Training Curves Preventing Overfitting
Evaluating Model Convergence and Ensuring Robust and Generalizable
Generalization Models
¢ Loss Evolution: Training and validation loss * Cross-Validation: Data are partitioned into
curves are monitored across epochs to ensure training and validation folds to assess model
convergence and avoid overfitting. consistency and detect overfitting tendencies
early.
* Early Stopping: Training halts automatically
when validation loss plateaus, preventing * Dropout Layers: Randomly deactivating
excessive optimization on training data. neurons during training reduces co-adaptation
and enhances model generalization.
* Learning Rate Scheduling: Dynamic learning
rates stabilize training and promote faster * Regularization: L1/L2 penalties constrain
convergence, adapting to gradient changes. model weights, discouraging excessive
complexity and improving interpretability.
¢ Interpretation: A stable separation between
curves indicates good generalization; * Data Augmentation: Temporal shuffling and
divergence signals underfitting or overfitting. noise injection broaden the input distribution,
mimicking real-world variability.
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Validation Metrics
Quantifying Model Accuracy and Performance

Vx o

Root Mean Square Error (RMSE) Mean Absolute Error (MAE)
Measures the average magnitude of prediction Captures average deviation from observed values,
error. Example: RMSE = 0.0263 at 60 m resolution providing an interpretable measure of forecast
indicates high model precision. reliability.
e Lol
Mean Squared Error (MSE) Benchmarking
Emphasizes large deviations by squaring errors, Comparing these metrics across regions and
making it sensitive to outliers and robust for seasons validates generalizability and model
optimization tuning. robustness under different climatic conditions.
8/10/2025/ © A. Camps, UPC 2025 71/93

Financiado por
1a Uy opea
Hes =

@ @ SpaceSUITE @é%;{i?:;’:,‘;;?““"‘“ BUPCxels $agrixels = s
Impuls
Ag!\’tech

Training and validation @ 60 m spatial resolution (i)
Parameter settings

Layers Input variables Learning :E100 lookback Forecast Number dropout hidden Train/test
rate size length of layers size split

0-10cm @ 60m '0_10cm soil moisture’, 'temperature_2m’, 0.0001 100 81%/19%
'relative_humidity_2m’, 'precipitation’,
our] et (early stop at 58)
‘et0_fao_evapotranspiration’,
'wind_speed_10m’,
‘wind_gusts_10m’,
'vapor_pressure_deficit"

10-40cm @ 60m '0_10cm soil moisture’, 0.0001 128 100 1 14 1 0.1 64 81%/19%

'soil_moisture_10_to_40cm’, (early stop at 20)
'temperature_2m’,
'relative_humidity_2m’, 'precipitation’,

40 -100 cm @ 60m '0_10cm soil moisture”, 0.0001 128 100 7 14 1 0.1 64 81%/19%
'soil_moisture_10_to_40cm’, (early stop at 28)
'soil_moisture_40_to_100cm’,
'relative_humidity_2m’, 'precipitation’

eLearning Rate: The step size that controls how much the model’s weights are updated during each optimization step. *Number of Layers: The number of stacked LSTM layers in the neural network.

*Batch Size: The number of samples processed together before the model’s weights are updated. *Dropout: A regularization technique that randomly deactivates a fraction of neurons during training to
*Epochs: The number of times the entire training dataset passes through the model during training. prevent overfitting.

eLookback: The number of past time steps used as input to predict the next value in a time series. eHidden Size: The number of neurons in each LSTM layer, representing the dimensionality of the hidden state.
eForecast Length: The number of future time steps the model predicts. *Train/Test Split: The proportion of the dataset allocated to training versus validation or testing.
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Training and validation @ 60 m spatial resolution (ii)

Training performance

Training and Validation Loss

—— Training Loss
— Validation Loss

0-10cm @ 60 m

Loss (MSE)

o 10 20 a0

30
Epoch

Evaluation metrics

Loss (MSE)

Training and Validation Loss
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—— Training Loss.
— Validation Loss

10-40 cm @60 m

Loss (MSE)

— Training Loss
— Validation Loss

40-100 cm @ 60 m

0 a0

Epoch

50 &0

15
Epach

25

RMSE

0-10cm @ 60 m 0.0009
10-40cm @ 60 m 0.0012
40-100cm @ 60m 0.0018

8/10/2025/
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Multi-layer Predictions

==
=

Layered Output Structure
Predictions are generated for three depth intervals
—0-10 cm, 10-40 cm, and 40-100 cm—
representing distinct soil horizons with unique
hydrological behavior.

&

Improved Irrigation Insights
Layer-specific forecasts inform irrigation
scheduling, ensuring water reaches the target root
zone while avoiding wasteful over-irrigation.

8/10/2025/
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Vertical Continuity Modeling
The LSTM captures inter-layer dependencies,
linking surface moisture pulses to deeper storage
and percolation effects.

=
Beyond Surface Data
Subsurface predictions extend the digital twin's

situational awareness, enabling long-term soil
water balance assessment.

© A. Camps, UPC 2025
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Digital
Twin

In situ
soil moisture
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Dataset Resolution

e Regional-Scale Data (1 km): |deal for large-scale
monitoring and long-term trend analysis; enables

computational efficiency for continental or national

DTs.

Field-Scale Data (60 m): Captures fine-grained
variability in soil and crop conditions; supports
precision agriculture and localized decision-
making.

e Resolution Trade-offs: Higher resolution improves

spatial detail but increases data volume, noise, and
training time—requiring careful model design.

e Multi-Resolution Fusion: Combining coarse and
fine data layers allows simultaneous regional
insight and site-specific precision.

[T
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Interpretability

Each dot represents one sample or
observation in the dataset

Explaining Model Decisions Using Feature Importance and SHAP

push prediction higher no impact push prediction lower

.

Feature Attribution: SHAP (SHapley Additive
exPlanations) quantifies each feature’s contribution to
a prediction, revealing how inputs like precipitation or
EOQ indices drive results.

Variable Importance: Global importance rankings
identify key predictors—often precipitation,
temperature, and NDVI—for model transparency and
insight.

reawre vae

Local Explanations: Case-level SHAP values
visualize the relative influence of each feature on
individual forecasts, supporting interpretability in real-
time.

Decision Support: Transparent models enhance trust
among stakeholders, aligning Al outputs with
agronomic expertise and physical reasoning.

-- importance ++
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SHAP value (impact on model output)

Sample SHAP values of NN
to downscale SMOS soil moisture maps (0-10 cm)
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Example Predictions

* Forecast vs Observation: The LSTM model
reproduces the temporal evolution of soil moisture
closely, aligning with in situ probe measurements
across varying conditions.

¢ Pattern Recognition: Model captures seasonal
trends and rainfall-driven spikes, demonstrating
ability to generalize under both dry and wet
regimes.

¢ Uncertainty Representation: Prediction intervals
reflect sensor noise and model uncertainty,
offering confidence estimates for decision-
making.

¢ Operational Relevance: Time-series predictions

feed directly into irrigation scheduling tools and
Digital Twin dashboards for actionable insights.
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Soil moisture profiles forecast
up to 14 days from present
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Scalability
Expanding AI4WATER Models Across

P/ 1Y
EHEER
wr

From Pilot to Regional Scale
Models initially trained at La Fuliola are
generalized and deployed across Mediterranean
basins with climate and soil parameter adaptation.

Infrastructure Scaling
Cloud-native deployment enables elastic scaling of
data ingestion, training, and inference workloads
across distributed clusters.
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Transfer Learning

Pre-trained weights from pilot models accelerate
adaptation to new regions, minimizing the need for
full retraining.

&
Interoperable Framework
OGC-compliant APIs allow integration of regional

Digital Twins, supporting cross-boundary water
management initiatives.

UPC 2025
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Training and validation @ 1 km spatial resolution (i)
Parameter settings
Layers Input variables Learning Batch lookback Forecast Number dropout hidden
rate size length of layers size
0_10cm_1km '0_10cm soil moisture’, 'temperature_2m’, 0.0001 64 10 1 0.3
'relative_humidity_2m’, 'precipitation’,
‘evapotranspiration’, 'vapor_pressure_deficit'
10_40cm_1km '0_10cm soil moisture’, 0.0001 64 10 1 14 S 0.3 128
'soil_moisture_10_to_40cm’,
'temperature_2m’, 'relative_humidity_2m’,
'precipitation’, 'evapotranspiration’,
'vapor_pressure_deficit"
'0_10cm soil moisture’, 0.0001 64 10 1 14 3 0.3 128

40_100cm_1km

'soil_moisture_10_to_40cm’,
'soil_moisture_40_to_100cm’,
'relative_humidity_2m’, 'precipitation’,
‘evapotranspiration’, 'vapor_pressure_deficit'
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Train/test
split

70%/30%

70%/30%

70%/30%
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Training and validation @ 1 km spatial resolution (ii)
Training performance

Training History Training Histary
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Training History

Evaluation metrics

0-10cm @ 1 km 0.0016 0.0402 0.0320
10-40cm @ 1 km 0.0002 0.0143 0.1003
40-100 cm @ 1 km 0.0003 0.0172 0.0128

—— Training Loss —— Training Loss —— Training Loss
14 ‘Validation Loss validation Loss Validation Loss
08 a5
12 \ \,
\ 0-10cm @ 1 km N\ 10-40cm @ 1 km
\ 40-100 cm @ 1 km
1.0 06
T & _ 05
@ g o
S8 s :
3 g 3
04
06 2
04
02 02
0z
0 2 4 6 8 o 2 4 6 8 ] 2 8
Epach Epoch Epoch
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Training and validation(1 km spatial resolution)
Predictions vs. Actual (0 — 10 cm @ 1 km, validation dataset)
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Predictions vs Actual - Residual Plot
R2 = 0.9016 Predictions vs Actual (randomly selected samples) MAE = 0.032016
B — Actual
~—— Predicted
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0.0 0.1 0.2 0.3 0.4 0.5 0 200 400 600 800 1000 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Actual Soil Moisture (m3/m?3) Sample Index Predicted Soil Moisture (m?/m?)

A.  Predictions vs Actual. R? is the coefficient of determination; the red dashed line is the perfect prediction line y=x (1:1 line)
Predictions vs Actual. Randomly selected from the 1000 samples from validation dataset to show the predictions with their corresponding actual values.
C.  Residual plot. Residuals are calculated as predictions minus their corresponding actual values; the red dashed line is y=0; MAE is the mean absolute value of residuals.

o
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Training and validation(1 km spatial resolution)
Predictions vs. Actual (10—-40 cm @ 1 km, validation dataset)
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Predictions vs Actual - Residual Plot
R? = 0.9147 Predictions vs Actual (randomly selected samples) MAE = 0.010338
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Actual Soil Moisture (m*/m?3) Sample Index Predicted Soil Moisture (m3/m?3)

A.  Predictions vs Actual. R? is the coefficient of determination; the red dashed line is the perfect prediction line y=x (1:1 line)
B.  Predictions vs Actual. Randomly selected from the 1000 samples from validation dataset to show the predictions with their corresponding actual values.
C.  Residual plot. Residuals are calculated as predictions minus their corresponding actual values; the red dashed line is y=0; MAE is the mean absolute value of residuals.
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Training and validation(1 km spatial resolution)
Predictions vs. Actual (40— 100 cm @ 1 km, validation dataset)
Predictions vs Actual predicti Actual (randomly selected | Residual Plot
R2 = 0.9027 redictions vs Actual (randomly selected samples) MAE = 0.012832
Actual 0.06
~—— Predicted
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Actual Soil Moisture (m*/m?3) Sample Index Predicted Soil Moisture (m3/m?)
A.  Predictions vs Actual. R? is the coefficient of determination; the red dashed line is the perfect prediction line y=x (1:1 line)
B.  Predictions vs Actual. Randomly selected from the 1000 samples from validation dataset to show the predictions with their corresponding actual values.
C.  Residual plot. Residuals are calculated as predictions minus their corresponding actual values; the red dashed line is y=0; MAE is the mean absolute value of residuals.
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Forecasting Soil Moisture - 14-day SM Predictions for Multi-layer profiles
00913 Actual Rain Rate from Meteo Data

E-3 - l\\)AB
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—_—  es— Soil moisture profiles forecast
008 0.10 a1z LIS\:II Mo‘;::e 020 023 025 up to 14 days from present
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Summary: Virtual Layer - the “core” of the Digital Twin

LSTM as the Brain

Long Short-Term Memory networks capture
temporal dependencies across climatic, soil, and
crop variables, forming the cognitive engine of the

digital twin.

©

Predictive and Prescriptive Power

Beyond forecasting, neural models support
scenario analysis and decision optimization for
water and crop management.

8/10/2025/
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Multi-Source Learning

Training integrates EO, meteorological, and in sitt
data streams, enhancing robustness and
adaptability across scales.

A
| =4

Continuous Calibration

Ongoing ingestion of new observations keeps
models dynamically tuned, ensuring sustained
performance and relevance.
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Multi-layer Visualization
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3D Representation of Soil Moisture Profiles

&

Depth Profile Mapping
Visualization combines predictions from 0-10,

10-40, and 40-100 cm layers, creating a full 3D
soil moisture distribution.

<
>

Data Fusion Display

Combines in situ, EO, and model data to generate
geospatially consistent volumetric maps of soil
water content.

o

Temporal Evolution

Dynamic animations show moisture movement
over time, allowing users to track infiltration and
drying cycles.

L]

Decision Support Interface

Interactive dashboards provide cross-sections,
time sliders, and statistical summaries for expert
users.

8/10/2025/
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1. Addition of farmers’ irrigation: when, where, how much ?

2. Improved GUI

¢ Dashboards for Farmers & Policymakers:
Interactive dashboards provide real-time insights into
crop conditions, soil moisture, and irrigation needs.
Farmers can access localized data, while
policymakers can monitor regional water use
efficiency and sustainability metrics.

* Mobile-Friendly Visualization: Responsive, mobile-
first interfaces ensure accessibility in the field.
Farmers can visualize forecasts, receive irrigation
alerts, and input on-site data from smartphones or
tablets, enabling a seamless human-DT interaction.

¢ Data-Driven Decision Support: The Ul integrates Al
analytics to recommend optimal irrigation timing,
detect anomalies, and visualize risk zones using
intuitive color-coded maps and scenario simulations.

8/10/2025/
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Easier interpretation (at a given day from d until d+14 days)

* Red: drier than threshold for more than X days
* Blue: wetter than threshold for more than X days
* Green: SM OK, lower than upper threshold & higher than

lower threshold
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3. Irrigation Scheduling (i)

ol
Forecast-Based Recommendations

The system suggests optimal irrigation timing and
volume using 14-day soil moisture forecasts,
reducing waste while preventing crop stress.

7~
L =4

Adaptive Control

Integration with loT-enabled irrigation systems
allows automatic scheduling adjustments in
response to updated forecasts.

8/10/2025/
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Root-Zone Focus

Multi-layer predictions target the active root zone,

aligning irrigation depth with crop water demand.

&

Resource Efficiency

Al-driven scheduling reduces water use by up to
20-30% without compromising yield or quality.
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3. Irrigation Scheduling (ii) — Water savings

¢ Reduced Consumption: Field trials indicate
20-35% reduction in irrigation water use while
maintaining or improving yields.

¢ Dynamic Optimization: Forecast-based
scheduling aligns irrigation with actual soil
moisture dynamics, avoiding unnecessary water
application.

¢ Energy and Cost Benefits: Lower water usage
translates to decreased pumping energy and
operational expenses for farmers.

» Sustainability Impact: Water savings
contribute to broader sustainability goals under
the EU Green Deal and UN SDG 6 (Clean Water).

[Picture from Unsplash]
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4. Crop Yield Improvements

e Optimized Soil Moisture Levels: Maintaining
optimal root-zone moisture reduces crop stress
and improves photosynthetic efficiency, leading to
higher biomass accumulation.

e Data-Informed Irrigation: Predictive irrigation
ensures water availability aligns with critical
growth stages, maximizing yield potential.

* Measured Gains: Field validation shows 5-15%
yield increases in cereals and horticultural crops
when guided by AI4WATER recommendations.

¢ Resilience Enhancement: Improved soil-water
balance enhances drought tolerance and
stabilizes yields under variable climatic
conditions.

5. Coupling with other Digital Twins — ex. UCo, other countries

[Picture from Unsplash]
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CO“C'USIOI’IS: Contributing to UN SDG 2 - Zero
Hunger
Digital Twins enhance food
g 2 g ity by i
 Improved Water Management: Digital Twin production eciency. reducing
forecasts optimized irrigation scheduling, Yoste/and supporting
resulting in up to 20% water savings across pilot management, particularly in
- . . .. . - . W e If regi A
sites while maintaining or improving crop yields. =g R
* Operational Efficiency: Integration of remote Supporting t‘:‘ SDGE/-Clean
. ater
sensing, loT, and Al reduced manual Through precise iigation
interventions and improved reaction time to fv;f;;s;;:%d 2?;.'3'::‘;?53}3;15;5
drought stress events by 35%, enhancing field- and ensure compliance with
H integrated water resource
level responsiveness. ma?‘agemem iRty
* Resilience & Sustainability: DT-driven decision PR
support |n_creased system re5|l|¢nce under (Farm-to-Fork)
variable climate conditions and improved DT-enabled transparency and
. . s . traceability across the agrifood
compliance with EU water directives and chain contribute to the Green
SUStainab“it OalS Deal’s sustainability targets,
y g e reducing emissions, chemical
inputs, and environmental
impact.
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AI4WATER - Gemelos digitales para agricultura de regadio (TED2021-131877B-100)

GENESIS - Gnss ENvironmEntal and Societal miSsions (PID2021-1264360B-C21)

AGRIXELS - Estandar de informacién agraria orientado a servicios basados en Inteligencia Artificial para casos de

uso en agroalimentacion (TSI-100121-2024-19)

SpaceSUITE - SPACE downstream Skills development and User uptake through Innovative curricula in Training

and Education (PI-ALL-101140269-SpaceSUITE)

Cofinangat per

TATIN Generalitat de Catalunya
Departament d’Empresa la Unié Europea

WU i Treball *ax
Tutorial subvencionat pel Departament d'Empresa (Programa Primer)
i amb el cofinangament del Fons Social Europeu Plus

To know more about the AI4WATER project: [https://youtu.be/4E_Jd-oXzsw?si=qAdTzdskPQUh48PZ]
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Thanks for your attention.

Questions?
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Backup slides
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STAC Framework

e Purpose and Structure: STAC defines a unified
JSON-based schema for cataloging spatiotemporal
assets (e.g., satellite images, drone captures). Core
components: Item (single asset), Catalog
(collection), and API (queryable interface).

e Data Flow Model: STAC enables discoverability
and automation across cloud repositories:
ingestion — indexing — search — access. It links
metadata, geolocation, and time attributes for
scalable Earth Observation pipelines.

e Mathematical Abstraction: A STAC ltem | can be
represented as | = {A, S, T, M}, where A is asset link,
S spatial footprint, T timestamp, and M metadata
vector. Query: Q = f(S, T, M) — returns subset of
ltems satisfying filter constraints.
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Mathematical formulation Classical cell schematic
fe = o(Wylhe_y, @] + by) forget gate
iy = o(Wilh—y, o) + b;) input gate + Horizontal line = cell state C} flowing through time.
ég = tanh(W,[hs_1, 24 + b:) candidate state = Vertical paths = gates receiving [h,_l, mt\
Ci=fi0C14+i0C cell update * O nodes = element-wise multiplication; + nodes = additive update.
or = o(Wolhi-1,zt] + bo) output gate « Output hy exits through the top of the block.
hy = 0 ® tanh(Cy) hidden state @ @ @
Key properties T c T c T
-
« The additive update in C; allows gradients to flow without vanishing. : I ; L,
« Multiplicative gates (f;, #s, 04) act as differentiable logic controls. A 4+ 2 taga A
« Each gate has independent parameters (W,, b, ) learned by back-propagation through time. (a3 5]
J > r > ’-’

I
& ) &
* An LSTM cell is a gated dynamical system combining multiplicative and additive pathways: f, decides what to forget, i, what
to add, o, what to expose. The memory cell C, provides constant error flow stabilizing long-term gradient propagation
* The linear recurrence of C, C, C, maintains long-range memory, while gating non-linearities regulate information flow.
* In Digital Twins, LSTMs enable multi-scale temporal forecasting—learning coupled dynamics between climate drivers and
observed responses such as evapotranspiration or biomass evolution.
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ARIMA (AutoRegressive Integrated Moving Average) model

Mathematical Formulation
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* ARIMA forms the statistical backbone of time-series T

forecasting. Y= G1tp-1+ o+ Opyrp + €+ Oy + o0+ Ogery,
* By decomposing a signal into autoregressive and moving- where ¢ ~ N (0, o2).

average components after differencing, it captures linear ARIMA(p,d,q) extends this by differencing d times:

temporal structure. Viy = (1 - B)'y, @(B)V = O(B)e,
* In Digital Twin frameworks, ARIMA provides a physically with B the back-shift operator and &, © polynomials in B.

. . . Int: tati
interpretable baseline for process forecasting, anomaly rieprEtaion

. . . . . AR(p) captures persistence (temporal correlation).
detection, and uncertainty quantification before higher- AR P

.

I(d) removes trend or seasonality via differencing.

order ML models are applied. MA(q) models shock propagation through past errors.

Parameter estimation by maximum likelihood; model order by AIC/BIC.

Applications
« Forecasting climate or hydrological variables driving Digital Twins.
» Baseline for comparing deep models (LSTM, Transformer).

» Hybrid ARIMA-ML pipelines fuse physical interpretability with nonlinear learning.
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VAR (Vector Autoregression)
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A VAR(p) model for an n-dimensional time series y¢ = (Y1t - . , Ynt]" is

) . ye = Arge1 + Aosypa + ...+ Apyr—p + €1, €& ~N(0,5)
* VAR generalizes the AR model to vector time

where

series, capturing inter-variable feedback
» cap J « A; € R™" are coefficient matrices capturing cross-variable dependencies,

loops. « X is the covariance of innovations.

* It enables analysis of how disturbances in The compact fag-opesator form:

_ — A B —..._ ABP
one component propagate through the A(Blp=e,  AB)=1-AB - 4B —... - A,B"

Stability & Impulse Response

system.
System stability requires det |A(z)| # 0 for |z]<1.
* In Digital Twin applications, VAR provides a Impulse-response functions (IRFs) describe the propagation of shocks through time:
transparent statistical framework to Yerh = Prer, Bn= A1®poy + ..+ Ap®hp.

diagnose causal relations and simulate multi- Applications
. . . = Captures coupled dynamics among multiple climate or sensor variables in Digital Twins (soil moisture,
sensor co-evolution before embedding into P pled dy g multp tavlesin blg ¢ '
temperature, rainfall).
non-linear neural models. * Supports forecasting, granger causality, and scenario simulation.

+ Forms a linear baseline for multivariate sequence models such as RNNs and Transformers.

8/10/2025/ © A. Camps, UPC 2025 98/93




10/8/2025

@ @ SpaceSUITE

Impuls
Agritech

Kalman filter

¢ Kalman filter is a recursive Bayesian estimator
operating on linear Gaussian state-space models.

* |t alternates between predicting the system
evolution and correcting that prediction with new
measurements.

* In Digital Twin systems, Kalman filtering ensures
dynamic consistency between model forecasts and
sensor observations, forming the core of real-time

data assimilation pipelines.

8/10/2025/
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Mathematical Formulation

State-space model:

@y = Axy_y + Buy + wy,

wi ~ N(0,Q)

ye = Hay + v, vy ~ N(0,R)

Prediction Step
Fyp_1 = A1 + By
Py = AP, A" +Q
Update Step
Ky = Py HY(HPy ,HT + R)™
Eyy = &1 + Koy — Hagp1)
Py = (I - K,H)Py,

Interpretation
« x4 hidden system state; y;: noisy observation.
= The filter provides the optimal linear unbiased estimator minimizing state error covariance.
* Recursive algorithm combining model prediction and measurement correction.
Applications
« Data assimilation for Digital Twins (soil moisture, temperature, hydrological states).
+ Sensor fusion from heterogeneous inputs.

+ Smoothing noisy signals and reconstructing latent dynamics.

99/93

&% spacesuITE

Impuls
Agritech

Recurrent neural Networks

* RNNs introduce recurrence to neural computation,
enabling context retention across time steps.

* The network’s hidden state acts as a compact
sufficient statistic of all past inputs.

* In Digital Twins, simple RNNs provide fast,
interpretable baselines for temporal forecasting
and serve as precursors to gated and attention-

based architectures.
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Mathematical Formulation

For input sequence x; € &'

and hidden state by € R™:

hy = @(Wheze + Whnhy 1+ bi)
=Wl +b,

where
» ¢(+) = non-linear activation (tanh / RelU),
* Wiz, Wip, Wy = learned weights,
» hy carries temporal context forward.
Training — Backpropagation Through Time (BPTT)

Gradients are computed recursively:

OL 0L, Ok

W, S Oh W

but repeated Jacobian multiplication can cause

(LSTM, GRU).

ploding ing gated variants

Interpretation

+ RNNs are discrete-time nonlinear dynamical systems.
« Each hidden layer acts as a memory that integrates historical input.
« Suitable for short-term dependencies and sequence labeling.
Applications
« Forecasting meteorological sequences (e.g., precipitation — humidity).
» Temporal fusion of satellite + loT data in Digital Twins.

« Embedding dynamical priors in hybrid physical-ML simulators.
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Gated Recurrent Unit (GRU)

¢ GRUs simplify LSTM design by collapsing
forget and input gates into a single update
mechanism.

Its reduced parameterization allows faster
convergence with comparable temporal
modeling capacity.

In Digital Twin contexts, GRUs offer an
excellent trade-off between accuracy and
efficiency for near-real-time forecasting

across multi-sensor data streams.
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Mathematical Formulation
z = o(W.[h y,2] +b.)
re = o(Welhe 1,2 + b)
by = tanh(W[r, @ by 1, 2] + by)
llf = (17Z!)®’If 1+Z;®’-Lf

update gate
reset gate
candidate state

new hidden state

Interpretation
» Update gate (z;) controls how much new information replaces memory.
= Reset gate (r;) determines how strongly the past influences the candidate state.
+ Unlike LSTM, GRU merges cell & hidden states — fewer parameters, faster training.

« Retains long-term context through additive updates, avoiding vanishing gradients.
Applications
« Lightweight alternative to LSTM in real-time Digital Twin forecasting.

* Performs well for medium-length dependencies (e.g.. soil moisture trends).
= Integrated in loT pipelines where computational efficiency is crucial.
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Transformers

e

enabling direct modeling of global temporal and
spatial dependencies.

By weighing all positions simultaneously, they
excel at long-sequence prediction and multi-
modal fusion.

In Digital Twin applications, Transformers can
assimilate satellite, sensor, and climate data
streams for large-scale forecasting with

unmatched interpretability via attention maps.
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Core Mathematical Formulation

For an input sequence of embeddings X = [aﬂ'.. Zoyeuey :r,ﬂ,

we compute the scaled dot-product attention:

Q=XWy, K=XWg, V=XWy,
4 QK"
Attention(Q, K, V) = softmax N v
i

The multi-head attention mechanism:
MHA(Q, K,V) = [head, ..., head,]Wo, where head; — Attention(QWZ, KW VW)

Each layer includes residual and layer

Y = LayerNorm(X + MHA(X, X, X))
Z = LayerNorm(Y + FFN(Y))

Architectural Interpretation
+ Encoder-decoder structure with stacked self-attention layers.
« Captures global dependencies via attention weights instead of recurrence.
= Position encoding injects order information into embeddings.
« Parallelizable — efficient for long sequences and high-dimensional inputs.

Applications
« Spatiotemporal forecasting in Digital Twins (e.g.. climate sequences, satellite time series).
= Fusion of heterogeneous sensor data.

« Foundation for advanced models (Vision Transformers, Temporal Transformers).
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